Страница
из раздела
Формальная логика

Круги Эйлера

Круги Эйлера

Эйлеровы круги (круги Эйлера) — принятый в логике способ моделирования, наглядного изображения отношений между объемами понятий с помощью кругов, предложенный знаменитым математиком Л. Эйлером (1707–1783).

Обозначение отношений между объемами понятий посредством кругов было применено еще представителем афинской неоплатоновской школы — Филопоном (VI в.), написавшим комментарии на «Первую Аналитику» Аристотеля.

Условно принято, что круг наглядно изображает объем одного какого-нибудь понятия. Объем же понятия отображает совокупность предметов того или иного класса предметов. Поэтому каждый предмет класса предметов можно изобразить посредством точки, помещенной внутри круга, как это показано на рисунке:

предмет класса - точка

Группа предметов, составляющая вид данного класса предметов, изображается в виде меньшего круга, нарисованного внутри большего круга, как это сделано на рисунке.

включенный класс - меньший круг

Такое именно отношение существует между объемами понятий «небесное тело» (А) и «комета» (B). Объему понятия «небесное тело» соответствует больший круг, а объему понятия «комета» — меньший круг. Это означает, что все кометы являются небесными телами. Весь объем понятия «комета» входит в объем понятия «небесное тело».

В тех случаях, когда объемы двух понятий совпадают только частично, отношение между объемами таких понятий изображается посредством двух перекрещивающихся кругов, как это показано на рисунке:

пересекающиеся классы

Такое именно отношение существует между объемом понятий «учащийся» и «комсомолец». Некоторые (но не все) учащиеся являются комсомольцами; некоторые (но не все) комсомольцы являются учащимися. Незаштрихованная часть круга А отображает ту часть объема понятия «учащийся», которая не совпадает с объемом понятия «комсомолец»; незаштрихованная часть круга B отображает ту часть объема понятия «комсомолец», которая не совпадает с объемом понятия «учащийся». 3аштрихованиая часть, являющаяся общей для обоих кругов, обозначает учащихся, являющихся комсомольцами, и комсомольцев, являющихся учащимися.

Когда же ни один предмет, отображенный в объеме понятия A, не может одновременно отображаться в объеме понятия B, то в таком случае отношение между объемами понятий изображается посредством двух кругов, нарисованных один вне другого. Ни одна точка, лежащая на поверхности одного круга, не может оказаться на поверхности другого круга.

непересекающиеся классы

Такое именно отношение существует, например, между понятиями «тупоугольный треугольник» и «остроугольный треугольник». В объеме понятия «тупоугольный треугольник» не отображается ни один остроугольный треугольник, а в объеме понятия «остроугольный треугольник» не отображается ни один тупоугольный треугольник.

Отношения между равнозначащими понятиями, объемы которых совпадают, отображаются наглядно посредством одного круга, на поверхности которого написаны две буквы, обозначающие два понятия, имеющие один и тот же объем:

понятия с одинаковыми объемами - совпадающие круги

Такое отношение существует, например, между понятиями «родоначальник английского материализма» и «автор „Нового Органона“». Объемы этих понятий одинаковы, в них отобразилось одно и то же историческое лицо — английский философ Ф. Бэкон.

Нередко бывает и так: одному понятию (родовому) подчиняется сразу несколько видовых понятий, которые в таком случае называются соподчиненными. Отношение между такими понятиями изображается наглядно посредством одного большого круга и нескольких кругов меньшего размера, которые нарисованы на поверхности большего круга:

соподчиненные понятия

Такое именно отношение существует между понятиями «скрипка», «флейта», «пианино», «рояль», «барабан». Эти понятия в равной мере подчинены одному общему родовому понятию «музыкальные инструменты».

Круги, изображающие соподчиненные понятия, не должны касаться друг друга и перекрещиваться, так как объемы соподчиненных понятий несовместимы; в содержании соподчиненных понятий имеются, наряду с общими, различающие признаки. Эта схема отображает общее, что характерно для отношения любых соподчиненных понятий, взятых из различных областей знания. Это применимо к понятиям: «дом», «сарай», «ангар», «театр», подчиненных понятию «постройка»; к понятиям: «муха», «комар», «бабочка», «жук», «пчела», подчиненных понятию «насекомое» и т. д.

В тех случаях, когда между понятиями имеется отношение противоположности, отношение между объемами таких понятий отображается посредством одного круга, обозначающего общее для обоих противоположных понятий родовое понятие, а отношение между противоположными понятиями обозначается так: А — родовое понятие, B и C — противоположные понятия. Противоположные понятия исключают друг друга, но входят в один и тот же род, что можно выразить такой схемой:

противоположные понятия

При этом видно, что между противоположными понятиями возможно третье, среднее, так как они не исчерпывают полностью объема родового понятия. Такое именно отношение существует между понятиями «легкий» и «тяжелый». Они исключают друг друга. Нельзя об одном и том же предмете, взятом в одно и то же время и в одном и том же отношении, сказать, что он и легкий, и тяжелый. Но между данными понятиями есть среднее, третье: предметы бывают не только легкого и тяжелого веса, но также и среднего веса.

Когда же между понятиями существует противоречащее отношение, тогда отношение между объемами понятий изображается иначе: круг делится на две части так: А — родовое понятие, B и не-B (обозначается как ¬B) — противоречащие понятия. Противоречащие понятия, исключают друг друга и входят в один и тот же род, что можно выразить такой схемой:

противоречащие понятия

При этом видно, что между противоречащими понятиями третье, среднее, невозможно, так как они полностью исчерпывают объем родового понятия. Такое отношение существует, например, между понятиями «белый» и «не-белый». Они исключают друг друга. Нельзя об одном и том же предмете, взятом в одно и то же время и в одном и том же отношении, сказать, что он и белый и не-белый.

Посредством эйлеровых кругов изображаются также отношения между объемами субъекта и предиката в суждениях. Так, в общеутвердительном суждении, выражающем определение какого-либо понятия, объемы субъекта и предиката, как известно, равны. Наглядно такое отношение между объемами субъекта и предиката изображается посредством одного круга, подобно изображению отношений между объемами равнозначащих понятий. Разница только в том, что в данном случае всегда на поверхности круга надписываются две определенные буквы: S (субъект) и P (предикат), как это показано на рисунке:

субъект и предикат определения

Иначе выглядит схема отношения между объемами субъекта и предиката в общеутвердительном суждении, не являющемся определением понятия. В таком суждении объем предиката больше объема субъекта, объем субъекта целиком входит в объем предиката. Поэтому отношение между ними изображается посредством большого и малого кругов, как показано на рисунке:

общеутвердительное суждение

Примером первого вида отношений между объемами субъекта и предиката может служить суждение: «Все квадраты — равносторонние прямоугольники»; примером второго вида отношений между объемами предиката и субъекта может служить суждение: «Все квадраты — геометрические фигуры».

Эйлеровы круги применяются также и для наглядного изображения отношений между терминами силлогизма. Например, силлогизм

Выражен им в виде такой схемы:

силлогизм

Тот факт, что какая-то часть пространства В включается в пространство С, Эйлер выражал звездочкой, как это показано на следующей схеме

пересечение классов

Диаграммы Эйлера своим наглядным графическим изображением не только облегчают запоминание структуры различных сочетаний мыслей, но и помогают решению ряда задач, стоящих перед формальной логикой.

Давно известно, что с помощью эйлеровых кругов легко можно проверить истинность, например, того или иного вида непосредственного умозаключения. Для этого надо сравнить условие (антецедент) и следствие (консеквент) данного непосредственного умозаключения с диаграммами Эйлера. Правило сравнения гласит: если какая-либо из диаграмм, отвечающих условию (антецеденту), не совпадает ни с одной из диаграмм, отвечающих заключению, то этот вид непосредственного умозаключения является ложным.

Теперь допустим необходимо решить: истинно или ложно такое, например, непосредственное умозаключение: «Все S суть Р, следовательно, некоторые Р суть S».

Поскольку условием в этом непосредственном умозаключении является общеутвердительное суждение, то его обозначают латинской буквой А (от affirmance), а все суждение кратко записать так: Asp; следствием в этом непосредственном умозаключении является частноутвердительное суждение, которое обозначается латинской буквой I, а все суждение кратко записать так: Ips. Теперь данное непосредственное умозаключение будет выглядеть так:

Asp импликация Ips.

где импликация — знак импликации, сходный с союзом «если … , то … ».

После этого обратимся к диаграммам Эйлера, в которых отражены структуры всех категорических суждений относительно непустых множеств. Такими диаграммами могут быть пять следующих диаграмм:

Аsр
Isp
Iрs
Орs
Аsр
Арs
Isр
Ips
Арs
Isр
Iрs
Оsр
Isp
Iрs
Оsр
Ops
Еsр
Ерs
Osp
Орs

Под каждой диаграммой даны суждения, которые отображены этой диаграммой. Как видно, суждению Asp, находящемуся в условии, соответствуют первая и вторая диаграммы, а суждению Ips, находящемуся в следствии, соответствуют третья и четвертая диаграммы. Анализ показывает, что в составе первой и второй диаграмм имеются суждения Ips, следовательно, диаграммы, соответствующие условию, совпадают с обеими диаграммами, соответствующими следствию. Значит, данный вид непосредственного умозаключения Asp импликация Ips — является истинным. Возьмем какой-нибудь конкретный пример: если все конъюнкции суть сложные высказывания, то истинным следствием из этого суждения будет суждение: «некоторые сложные высказывания суть конъюнкции».

Рассмотрим еще такое непосредственное умозаключение: «Некоторые S суть Р, следовательно, ни одно Р не есть S». Мы уже знаем, что частноутвердительное суждение, находящееся в условии, можно записать символически так: Isp, а общеотрицательное суждение, находящееся в следствии, обозначается буквой Е. Теперь данное непосредственное умозаключение будет выглядеть так: Isp импликация Eps.

Посмотрим, что скажут нам диаграммы об этом непосредственном умозаключении. Суждению Isp, находящемуся в условии, соответствуют первая, вторая, третья и четвертая диаграммы, а суждению Eps, находящемуся в следствии, соответствует пятая диаграмма. Значит, ни одна из диаграмм, отвечающих условию, не совпадает ни с одной из диаграмм (в данном случае с одной единственной диаграммой), отвечающих следствию. А раз так, то данное непосредственное умозаключение является ложным.

Некоторые философы скептически относятся к применению эйлеровых кругов, видя в этом какой-то школьный примитив. Но они, конечно, неправы. Отрицать наглядные схемы в логике — это значит не понимать значения моделирования логических процессов и действий. Как правильно замечает rрузинский логик Л. П. Гокиели, эйлеровы круги «Играют определенную вспомогательную роль, и если учитывать эту роль, соблюдать меру и их осторожно применять … то нет никакого основания уклоняться от их использования». А. О. Маковельский справедливо считает, что «эйлеровы круги» придали учениям об отношении субъекта и предиката в суждении и об отношении терминов в категорическом силлогизме «прозрачную ясность»; углубляя анализ суждений и умозаключений они вместе с тем обладают дидактическими достоинствами, облегчая усвоение сложных логических проблем.

Hosted by uCoz